Various constructor methods for tfd
-objects.
tfd.matrix
accepts a numeric matrix with one function per
row (!). If arg
is not provided, it tries to guess arg
from the
column names and falls back on 1:ncol(data)
if that fails.
tfd.data.frame
uses the first 3 columns of data
for
function information by default: (id
, arg
, value
)
tfd.list
accepts a list of vectors of identical lengths
containing evaluations or a list of 2-column matrices/data.frames with
arg
in the first and evaluations in the second column
tfd.default
returns class prototype when argument to tfd() is
NULL or not a recognised class
Usage
tfd(data, ...)
# S3 method for matrix
tfd(data, arg = NULL, domain = NULL, evaluator = tf_approx_linear, ...)
# S3 method for numeric
tfd(data, arg = NULL, domain = NULL, evaluator = tf_approx_linear, ...)
# S3 method for data.frame
tfd(
data,
id = 1,
arg = 2,
value = 3,
domain = NULL,
evaluator = tf_approx_linear,
...
)
# S3 method for list
tfd(data, arg = NULL, domain = NULL, evaluator = tf_approx_linear, ...)
# S3 method for tf
tfd(data, arg = NULL, domain = NULL, evaluator = NULL, ...)
# S3 method for default
tfd(data, arg = NULL, domain = NULL, evaluator = tf_approx_linear, ...)
as.tfd(data, ...)
as.tfd_irreg(data, ...)
Arguments
- data
a
matrix
,data.frame
orlist
of suitable shape, or anothertf
-object. when this argument isNULL
(i.e. when callingtfd()
) this returns a prototype of classtfd
- ...
not used in
tfd
, except fortfd.tf
-- specifyarg
andìnterpolate = TRUE
to turn an irregulartfd
into a regular one, see examples.- arg
numeric
, or list ofnumeric
s. The evaluation grid. For thedata.frame
-method: the name/number of the column defining the evaluation grid. Thematrix
method will try to guess suitablearg
-values from the column names ofdata
ifarg
is not supplied. Other methods fall back on integer sequences (1:<length of data>
) as the default if not provided.- domain
range of the
arg
.- evaluator
a function accepting arguments
x, arg, evaluations
. See details fortfd()
.- id
The name or number of the column defining which data belong to which function.
- value
The name or number of the column containing the function evaluations.
Details
evaluator
: must be the (quoted or bare) name of a
function with signature function(x, arg, evaluations)
that returns
the functions' (approximated/interpolated) values at locations x
based on
the function evaluations
available at locations arg
.
Available evaluator
-functions:
tf_approx_linear
for linear interpolation without extrapolation (i.e.,zoo::na.approx()
withna.rm = FALSE
) -- this is the default,tf_approx_spline
for cubic spline interpolation, (i.e.,zoo::na.spline()
withna.rm = FALSE
),tf_approx_fill_extend
for linear interpolation and constant extrapolation (i.e.,zoo::na.fill()
withfill = "extend"
)tf_approx_locf
for "last observation carried forward" (i.e.,zoo::na.locf()
withna.rm = FALSE
andtf_approx_nocb
for "next observation carried backward" (i.e.,zoo::na.locf()
withna.rm = FALSE, fromLast = TRUE
). Seetf:::zoo_wrapper
andtf:::tf_approx_linear
, which is simplyzoo_wrapper(zoo::na.tf_approx, na.rm = FALSE)
, for examples of implementations of this.
Examples
# turn irregular to regular tfd by evaluating on a common grid:
f <- c(
tf_rgp(1, arg = seq(0, 1, length.out = 11)),
tf_rgp(1, arg = seq(0, 1, length.out = 21))
)
#> Warning: combining incompatible <tfd_reg> with <tfd_reg> by casting to <tfd_irreg>.
tfd(f, arg = seq(0, 1, length.out = 21))
#> New names:
#> • `1` -> `1...1`
#> • `1` -> `1...2`
#> tfd[2] on (0,1) based on 21 evaluations each
#> interpolation by tf_approx_linear
#> 1...1: (0.00,-0.32);(0.05,-0.24);(0.10,-0.16); ...
#> 1...2: (0.00,-0.84);(0.05,-1.05);(0.10,-1.22); ...
set.seed(1213)
f <- tf_rgp(3, arg = seq(0, 1, length.out = 51)) |> tf_sparsify(0.9)
# does not yield regular data because linear extrapolation yields NAs
# outside observed range:
tfd(f, arg = seq(0, 1, length.out = 101))
#> Warning: 86 evaluations were NA, returning irregular tfd.
#> irregular tfd[3] on (0,1) based on 59 to 87 (mean: 72) evaluations each
#> interpolation by tf_approx_linear
#> 1: (0.20, 0.50);(0.21, 0.48);(0.22, 0.46); ...
#> 2: (0.12,-0.34);(0.13,-0.30);(0.14,-0.26); ...
#> 3: (0.04,-0.43);(0.05,-0.43);(0.06,-0.42); ...
# this "works" (but may not yield sensible values..!!) for
# e.g. constant extrapolation:
tfd(f, evaluator = tf_approx_fill_extend, arg = seq(0, 1, length.out = 101))
#> tfd[3] on (0,1) based on 101 evaluations each
#> interpolation by tf_approx_fill_extend
#> 1: (0.00, 0.5);(0.01, 0.5);(0.02, 0.5); ...
#> 2: (0.00,-0.34);(0.01,-0.34);(0.02,-0.34); ...
#> 3: (0.00,-0.43);(0.01,-0.43);(0.02,-0.43); ...
plot(f, col = 2)
tfd(f,
arg = seq(0, 1, length.out = 151), evaluator = tf_approx_fill_extend
) |> lines()