Generates n
realizations of a zero-mean Gaussian process. The function also
accepts user-defined covariance functions (without "nugget" effect, see
cov
), The implemented defaults with scale
parameter \(\phi\), order
\(o\) and nugget
effect variance \(\sigma^2\) are:
squared exponential covariance \(Cov(x(t), x(t')) = \exp(-(t-t')^2)/\phi) + \sigma^2 \delta_{t}(t')\).
Wiener process covariance \(Cov(x(t), x(t')) = \min(t',t)/\phi + \sigma^2 \delta_{t}(t')\),
Matèrn process covariance \(Cov(x(t), x(t')) = \tfrac{2^{1-o}}{\Gamma(o)} (\tfrac{\sqrt{2o}|t-t'|}{\phi})^o \text{Bessel}_o(\tfrac{\sqrt{2o}|t-t'|}{s}) + \sigma^2 \delta_{t}(t')\)
Arguments
- n
how many realizations to draw
- arg
vector of evaluation points (
arg
of the return object). Defaults to (0, 0.02, 0.04, ..., 1). If given as a single integer (don't forget theL
...), creates a regular grid of that length over (0,1).- cov
type of covariance function to use. Implemented defaults are
"squareexp"
,"wiener"
,"matern"
, see Description. Can also be any vectorized function returning \(Cov(x(t), x(t'))\) without nugget effect for pairs of inputs t and t'.- scale
scale parameter (see Description). Defaults to the width of the domain divided by 10.
- nugget
nugget effect for additional white noise / unstructured variability. Defaults to
scale/200
(so: very little white noise).- order
order of the Matèrn covariance (if used, must be >0), defaults to 1.5. The higher, the smoother the process. Evaluation of the covariance function becomes numerically unstable for large (>20)
order
, use "squareexp".
See also
Other tidyfun RNG functions:
tf_jiggle()