Also used internally by the [
-operator for tf
data (see ?tfbrackets
) to
evaluate object
, see examples.
Usage
tf_evaluate(object, arg, ...)
# S3 method for default
tf_evaluate(object, arg, ...)
# S3 method for tfd
tf_evaluate(object, arg, evaluator = tf_evaluator(object), ...)
# S3 method for tfb
tf_evaluate(object, arg, ...)
Arguments
- object
a
tf
, or adata.frame
-like object withtf
columns.- arg
optional evaluation grid (vector or list of vectors). Defaults to
tf_arg(object)
, implicitly.- ...
not used
- evaluator
optional. The function to use for inter/extrapolating the
tfd
. Defaults totf_evaluator(object)
. See e.g.tf_approx_linear()
for details.
See also
Other tidyfun inter/extrapolation functions:
tf_approx_linear()
,
tf_interpolate()
Examples
f <- tf_rgp(3, arg = seq(0, 1, length.out = 11))
tf_evaluate(f) |> str()
#> List of 3
#> $ 1: num [1:11] 0.264 0.717 0.802 0.655 0.5 ...
#> $ 2: num [1:11] -2.121 -1.908 -1.396 -0.729 -0.262 ...
#> $ 3: num [1:11] 0.291 -0.29 -0.444 -0.191 -0.105 ...
tf_evaluate(f, arg = 0.5) |> str()
#> List of 3
#> $ 1: num 0.366
#> $ 2: num -0.0252
#> $ 3: num -0.61
# equivalent, as matrix:
f[, 0.5]
#> 0.5
#> 1 0.36585021
#> 2 -0.02516243
#> 3 -0.61012227
#> attr(,"arg")
#> [1] 0.5
new_grid <- seq(0, 1, length.out = 6)
tf_evaluate(f, arg = new_grid) |> str()
#> List of 3
#> $ 1: num [1:6] 0.264 0.802 0.5 0.104 -0.144 ...
#> $ 2: num [1:6] -2.1205 -1.3965 -0.2621 0.0976 0.9949 ...
#> $ 3: num [1:6] 0.291 -0.444 -0.105 -0.962 0.55 ...
# equivalent, as matrix:
f[, new_grid]
#> 0 0.2 0.4 0.6 0.8 1
#> 1 0.2641399 0.8016938 0.5003438 0.10448947 -0.1438695 0.1386855
#> 2 -2.1205464 -1.3964857 -0.2620896 0.09757397 0.9949393 1.3542389
#> 3 0.2909722 -0.4444448 -0.1050264 -0.96190135 0.5496152 2.1038015
#> attr(,"arg")
#> [1] 0.0 0.2 0.4 0.6 0.8 1.0