Integrals of tf
-objects are computed by simple quadrature (trapezoid rule).
By default the scalar definite integral
\(\int^{upper}_{lower}f(s)ds\) is returned (option definite = TRUE
),
alternatively for definite = FALSE
the anti-derivative on
[lower, upper]
, e.g. a tfd
or tfb
object representing \(F(t) \approx
\int^{t}_{lower}f(s)ds\), for \(t \in\)[lower, upper]
, is returned.
Usage
tf_integrate(f, arg, lower, upper, ...)
# S3 method for default
tf_integrate(f, arg, lower, upper, ...)
# S3 method for tfd
tf_integrate(
f,
arg,
lower = tf_domain(f)[1],
upper = tf_domain(f)[2],
definite = TRUE,
...
)
# S3 method for tfb
tf_integrate(
f,
arg,
lower = tf_domain(f)[1],
upper = tf_domain(f)[2],
definite = TRUE,
...
)
Arguments
- f
a
tf
-object- arg
(optional) grid to use for the quadrature.
- lower
lower limits of the integration range. For
definite=TRUE
, this can be a vector of the same length asf
.- upper
upper limits of the integration range (but see
definite
arg / Description). Fordefinite=TRUE
, this can be a vector of the same length asf
.- ...
not used
- definite
should the definite integral be returned (default) or the antiderivative. See Description.
Value
For definite = TRUE
, the definite integrals of the functions in
f
. For definite = FALSE
and tf
-inputs, a tf
object containing their
anti-derivatives
See also
Other tidyfun calculus functions:
tf_derive()